VIPTest: Rapid Application Testing for F5 Environments
VIPTest is a Python-based tool for efficiently testing multiple URLs in F5 environments, allowing quick assessment of application behavior before and after configuration changes. It supports concurrent processing, handles various URL formats, and provides detailed reports on HTTP responses, TLS versions, and connectivity status, making it useful for migrations and routine maintenance.141Views4likes1CommentHow to get a F5 BIG-IP VE Developer Lab License
(applies to BIG-IP TMOS Edition) To assist DevOps teams improve their development for the BIG-IP platform, F5 offers a low cost developer lab license.This license can be purchased from your authorized F5 vendor. If you do not have an F5 vendor, you can purchase a lab license online: CDW BIG-IP Virtual Edition Lab License CDW Canada BIG-IP Virtual Edition Lab License Once completed, the order is sent to F5 for fulfillment and your license will be delivered shortly after via e-mail. F5 is investigating ways to improve this process. To download the BIG-IP Virtual Edition, please log into downloads.f5.com (separate login from DevCentral), and navigate to your appropriate virtual edition, example: For VMware Fusion or Workstation or ESX/i:BIGIP-16.1.2-0.0.18.ALL-vmware.ova For Microsoft HyperV:BIGIP-16.1.2-0.0.18.ALL.vhd.zip KVM RHEL/CentoOS: BIGIP-16.1.2-0.0.18.ALL.qcow2.zip Note: There are also 1 Slot versions of the above images where a 2nd boot partition is not needed for in-place upgrades. These images include_1SLOT- to the image name instead of ALL. The below guides will help get you started with F5 BIG-IP Virtual Edition to develop for VMWare Fusion, AWS, Azure, VMware, or Microsoft Hyper-V. These guides follow standard practices for installing in production environments and performance recommendations change based on lower use/non-critical needs fo Dev/Lab environments. Similar to driving a tank, use your best judgement. DeployingF5 BIG-IP Virtual Edition on VMware Fusion Deploying F5 BIG-IP in Microsoft Azure for Developers Deploying F5 BIG-IP in AWS for Developers Deploying F5 BIG-IP in Windows Server Hyper-V for Developers Deploying F5 BIG-IP in VMware vCloud Director and ESX for Developers Note: F5 Support maintains authoritativeAzure, AWS, Hyper-V, and ESX/vCloud installation documentation. VMware Fusion is not an official F5-supported hypervisor so DevCentral publishes the Fusion guide with the help of our Field Systems Engineering teams.78KViews13likes144CommentsF5 Distributed Cloud Customer Edge on F5 rSeries – Reference Architecture
Traditionally, to advertise an application to the internet or to connect applications across multi-cloud environments enterprises must configure and manage multiple networking and security devices from different vendors in the DMZ of the data center. CE on F5 rSeries is a single vendor, converged solution for all enterprise multi-cloud application connectivity and security needs.692Views2likes2CommentsiHealth Upgrade Advisor: Making upgrades a little easier
Whether it is upgrading the firmware on a switch, the OS on a server, an important business application or the software on a BIG-IP, performing upgrades is something that makes almost all IT Admins and Network Engineers nervous. We’ve learned from (sometimes painful) experience that things don’t always go as planned. Good preparation greatly increases the likelihood that an upgrade will be successful, which is why F5 has created the iHealth Upgrade Advisor. Its goal is to provide an additional service from F5 that will complement your existing upgrade preparations, increasing the predictability of the upgrade while reducing your upgrade time. The iHealth Upgrade Advisor service provides a way for users to gain insight into potential issues with a BIG-IP upgrade before they attempt the upgrade. It provides guidance that is specific to a BIG-IP based on its configuration, the version of software it is currently running and the version you are planning to upgrade to. When an issue can be avoided by making a configuration change prior to upgrading, the Upgrade Advisor will tell you exactly what to change. For some issues, it will list the corrective actions to take after the upgrade. Demo Video This short video demonstrating the Upgrade Advisor shows you how to use it and some examples of the guidance it provides. Accessing the Upgrade Advisor The next time you are preparing to upgrade a BIG-IP, login to ihealth.f5.com, upload a .qkview file from that BIG-IP and then view the qkview after iHealth has analyzed it. The Upgrade Advisor can be accessed by clicking on its tab in the left-hand menu. Simply select the version of BIG-IP you are planning to upgrade to in the advisor and review the results. Here is a screenshot of the Upgrade Advisor: Give it a Try Try out the F5 upgrade Advisor today and let us know what you think using the feedback option (circled in red on the right side of the screenshot above).4KViews1like8CommentsA Simple One-way Generic MRF Implementation to load balance syslog message
The BIG-IP Generic Message Protocol implements a protocol filter compatible with MRF (Message Routing Framework).MRF is designed to implement the most complex use cases, but it can be daunting if you need to create a simple configuration. This article provides a simple baseline to understand the relationships of the MRF components and how they can be combined for a simple one way implementation . A production implementation will in most case be more complex. The following virtual, profiles and iRules load balances a one way stream of new line delimited messages (in this case syslog) to a pool of message consumers. The messages will be parsed and distributed with a simple MLB protocol. Return traffic will not be returned to the client with this configuration. To implement this we will need these configuration objects: Virtual Server - Accepts incoming traffic and configure the Generic Protocol Generic Protocol - Defines message parsing. Generic Router - Configures message routing and point to the Generic Route Generic Route- Points to a Generic Peer Generic Peer - Defines an LTM pool members and points to the Generic Transport Config Generic Transport Config - Defines the server side protocol and server side irule iRule - Defines the message peers (Connections in the message streams) In this case we have a single client that is sending messages to a virtual server that will then be distributed to 3 pool members. Each message will be sent to one pool member only.This can only be configured from the CLI and the official F5 recommendation is to not make any changes in the web GUI to the virtual server. This was tested with BIG-IP 12.1.3.5 and 14.1.2.6. Here is the virtual with a tcp profile andrequiredprotocol and routing profiles along withan iRule to setup the connection peer on the client side. ltm virtual /Common/mrftest_simple { destination /Common/10.10.20.201:515 ip-protocol tcp mask 255.255.255.255 profiles { /Common/simple_syslog_protocol { } /Common/simple_syslog_router { } /Common/tcp { } } rules { /Common/mrf_simple } source 0.0.0.0/0 source-address-translation { type automap } translate-address enabled translate-port enabled } The first profile is the protocol. The only difference betweenthe default protocol (genericmsg) is the field no-response must be configured to yes if this is a one way stream. Otherwise the server side will allocate buffers for return traffic that will cause severe free memory depletion. ltm message-routing generic protocol simple_syslog_protocol { app-service none defaults-from genericmsg description none disable-parser no max-egress-buffer 32768 max-message-size 32768 message-terminator %0a no-response yes } The Generic Router profilepoints to a generic route ltm message-routing generic router simple_syslog_router { app-service none defaults-from messagerouter description none ignore-client-port no max-pending-bytes 23768 max-pending-messages 64 mirror disabled mirrored-message-sweeper-interval 1000 routes { simple_syslog_route } traffic-group traffic-group-1 use-local-connection yes } The Generic Route pointsto theGeneric Peer: ltm message-routing generic route simple_syslog_route { peers { simple_syslog_peer } } The Generic Peer configures the server pool and points to the Generic Transport Config. Note the pool is configured here instead of the more common configuration in the virtual server. ltm message-routing generic peer simple_syslog_peer { pool mrfpool transport-config simple_syslog_tcp_tc } The Generic Transport Config also has the Generic Protocol configured along with the iRule to setup the server side peers. ltm message-routing generic transport-config simple_syslog_tcp_tc { ip-protocol tcp profiles { simple_syslog_protocol { } tcp { } } rules { mrf_simple } } An iRule must be configured on both the Virtual Server and Generic Transport Config. This iRule must be linked as a profile in both the virtual server and generic transport configuration. ltm rule /Common/mrf_simple { when CLIENT_ACCEPTED { GENERICMESSAGE::peer name "[IP::local_addr]:[TCP::local_port]_[IP::remote_addr]:[TCP::remote_port]" } when SERVER_CONNECTED { GENERICMESSAGE::peer name "[IP::local_addr]:[TCP::local_port]_[IP::remote_addr]:[TCP::remote_port]" } } This example is from a user case where a single syslog client was load balanced to multiple syslog server pool members. Messages are parsed with the newline (0x0a) character as configured in the generic protocol, but this can easily be adapted to other message types.1.6KViews2likes2CommentsBig IP FQDN Pool Member Resolution from /etc/hosts
Hi, I've added entries to the Big IP /etc/hosts file to map custom FQDNs to IP addresses (in an attempt to workaround the restriction of having LTM nodes with the same address). I then created an LTM Pool with a member using the custom FQDN hoping it would resolve to the IP address in the /etc/hosts file but unfortunately this is failing. The pool member is displaying the error "Unavailable (Enabled) - No records returned". Seems like the pool is only able to auto-populate via direct DNS queries. Is there any way to configure the Big IP to consult the /etc/hosts file first? Thanks69Views0likes5CommentsProblem with big packets using http2
Hi workmates, an application that passes through my F5 BIG-IP, requires for large post request, increasing the maximum header size from the default of 32k to 65k, and everything works perfectly, but only if I use http1.1.If i also enable the http2 profile, the packets are dropped by F5. Do you know if it is possible to use packets bigger than 32k using http2? My F5 version is this BIG-IP 15.1.683Views0likes4CommentsHost URL rewrite with different hostname and static URI
I am new to F5 and been asked to implement reverse proxy function. with following setup xyz.com - outside zxy.com - outside inside map it to xyz.com -> change to abc.com/site1/login zxy.com -> change to abc.com/site2/login user browser shows xyz.com/login need assistance to achieve the result33Views0likes1CommentARP issues between Nexus 7K and F5 LTM
Hi Team, We have faced a weird issue in our environment. issue: loadbalancer-1 failedover to Load balancer-2. Whereas all the production traffic flow did not failover properly to load balancer-2 for around 25 minutes. After 25 minutes load balancer-2 started getting production traffic to the VIPs. Does anyone have experienced similar ARP issue between F5 LTM and Nexus 7K at the time of fail-over? Is there any workaround to this issue meaning any configuration change on LTM and the time of issue? Is there any configuration change on LTM which would help to trigger GARP request two or three time to the upstream N7K? Regards, Thiyagu552Views0likes2CommentsActive/Active load balancing examples with F5 BIG-IP and Azure load balancer
Background A couple years ago Iwrote an article about some practical considerations using Azure Load Balancer. Over time it's been used by customers, so I thought to add a further article that specifically discusses Active/Active load balancing options. I'll use Azure's standard load balancer as an example, but you can apply this to other cloud providers. In fact, the customer I helped most recently with this very question was running in Google Cloud. This article focuses on using standard TCP load balancers in the cloud. Why Active/Active? Most customers run 2x BIG-IP's in an Active/Standby cluster on-premises, and it's extremely common to do the same in public cloud. Since simplicity and supportability are key to successful migration projects, often it's best to stick with architectures you know and can support. However, if you are confident in your cloud engineering skills or if you want more than 2x BIG-IP's processing traffic, you may consider running them all Active. Of course, if your totalthroughput for N number of BIG-IP's exceeds the throughput thatN-1 can support, the loss of a single VM will leave you with more traffic than the remaining device(s) can handle. I recommend choosing Active/Active only if you're confident in your purpose and skillset. Let's define Active/Active Sometimes this term is used with ambiguity. I'll cover three approaches using Azure load balancer, each slightly different: multiple standalone devices Sync-Only group using Traffic Group None Sync-Failover group using Traffic Group None Each of these will use a standard TCP cloud load balancer. This article does not cover other ways to run multiple Active devices, which I've outlined at the end for completeness. Multiple standalone appliances This is a straightforward approach and an ideal target for cloud architectures. When multiple devices each receive and process traffic independently, the overhead work of disaggregating traffic to spread between the devices can be done by other solutions, like a cloud load balancer. (Other out-of-scope solutions could be ECMP, BGP, DNS load balancing, or gateway load balancers). Scaling out horizontally can be a matter of simple automation and there is no cluster configuration to maintain. The only limit to the number of BIG-IP's will be any limits of the cloud load balancer. The main disadvantage to this approach is the fear of misconfiguration by human operators. Often a customer is not confident that they can configure two separate devices consistently over time. This is why automation for configuration management is ideal. In the real world, it's also a reason customers consider our next approach. Clustering with a sync-only group A Sync-Only device group allows us to sync some configuration data between devices, but not fail over configuration objects in floating traffic groups between devices, as we would in a Sync-Failover group. With this approach, we can sync traffic objects between devices, assign them to Traffic Group None, and both devices will be considered Active. Both devices will process traffic, but changes only need to be made to a single device in the group. In the example pictured above: The 2x BIG-IP devices are in a Sync-Only group called syncGroup /Common partition isnotsynced between devices /app1 partition issynced between devices the /app1 partition has Traffic Group None selected the /app1 partition has the Sync-Only group syncGroup selected Both devices are Active and will process traffic received on Traffic Group None The disadvantage to this approach is that you can create an invalid configuration by referring to objects that are not synced. For example, if Nodes are created in/Common, they will exist on the device on which they were created, but not on other devices. If a Pool in /app1 then references Nodes from /Common, the resulting configuration will be invalid for devices that do not have these Nodes configured. Another consideration is that an operator must use and understand partitions. These are simple and should be embraced. However, not all customers understand the use of partitions and many prefer to use /Common only, if possible. The big advantage here is that changes only need to be made on a single device, and they will be replicated to other devices (up to 32 devices in a Sync-Only group). The risk of inconsistent configuration due to human error is reduced. Each device has a small green "Active" icon in the top left hand of the console, reminding operators that each device is Active and will process incoming traffic onTraffic Group None. Failover clustering using Traffic Group None Our third approach is very similar to our second approach. However, instead of a Sync-Only group, we will use a Sync-Failover group. A Sync-Failover group will sync all traffic objects in the default /Common partition, allowing us to keep all traffic objects in the default partition and avoid the use of additional partitions. This creates a traditional Active/Standby pair for a failover traffic group, and a Standby device will not respond to data plane traffic. So how do we make this Active/Active? When we create our VIPs in Traffic Group None, all devices will process traffic received on these Virtual Servers. One device will show "Active" and the other "Standby" in their console, but this is only the status for the floating traffic group. We don't need to use the floating traffic group, and by using Traffic Group None we have an Active/Active configuration in terms of traffic flow. The advantage here is similar to the previous example: human operators only need to configure objects in a single device, and all changes are synced between device group members (up to 8 in a Sync-Failover group). Another advantage is that you can use the/Common partition, which was not possible with the previous example. The main disadvantage here is that the console will show the word "Active" and "Standby" on devices, and this can confuse an operator that is familiar only with Active/Standby clusters using traffic groups for failover. While this third approach is a very legitimate approach and technically sound, it's worth considering if your daily operations and support teams have the knowledge to support this. Other considerations Source NAT (SNAT) It is almost always a requirement that you SNAT traffic when using Active/Active architecture, and this especially applies to the public cloud, where our options for other networking tricks are limited. If you have a requirement to see true source IPandneed to use multiple devices in Active/Active fashion, consider using Azure or AWS Gateway Load Balancer options. Alternative solutions like NGINX and F5 Distributed Cloud may also be worth considering in high-value, hard-requirement situations. Alternatives to a cloud load balancer This article is not referring to F5 with Azure Gateway Load Balancer, or to F5 with AWS Gateway Load Balancer. Those gateway load balancer solutions are another way for customers to run appliances as multiple standalone devices in the cloud. However, they typically requirerouting, not proxying the traffic (ie, they don't allow destination NAT, which many customers intend with BIG-IP). This article is also not referring to other ways you might achieve Active/Active architectures, such as DNS-based high availability, or using routing protocols, like BGP or ECMP. Note that using multiple traffic groups to achieve Active/Active BIG-IP's - the traditional approach on-prem or in private cloud - is not practical in public cloud, as briefly outlined below. Failover of traffic groups with Cloud Failover Extension (CFE) One option for Active/Standby high availability of BIG-IP is to use the CFE , which can programmatically update IP addresses and routes in Azure at time of device failure. Since CFE does not support Active/Active scenarios, it is appropriate only for failover of a single traffic group (ie., Active/Standby). Conclusion Thanks for reading! In general I see that Active/Standby solutions work for many customers, but if you are confident in your skills and have a need for Active/Active F5 BIG-IP devices in the cloud, please reach out if you'd like me to walk you through these options and explore any other possibilities. Related articles Practical Considerations using F5 BIG-IP and Azure Load Balancer Deploying F5 BIG-IP with Azure Cross-Region Load Balancer1.3KViews2likes2Comments